Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

João A. S. Bomfim,^a* Marcos L. Dias,^a Carlos A. L. Filgueiras,^b Lorenzo do C. Visentin^b and Jairo Bordinhao^b

^aInstituto de Macromoléculas Eloisa Mano, Universidade Federal do Rio de Janeiro, Caixa Postal 68525, 21945-970 Rio de Janeiro, RJ, Brazil, and ^bInstituto de Química, Universidade Federal do Rio de Janeiro, Caixa Postal 68563, 21949-900 Rio de Janeiro, RJ, Brazil

Correspondence e-mail: jasb@ima.ufrj.br

Key indicators

Single-crystal X-ray study T = 295 KMean $\sigma(\text{C-C}) = 0.003 \text{ Å}$ R factor = 0.052 wR factor = 0.135Data-to-parameter ratio = 13.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

2,3-Bis[2-(trifluoromethyl)phenylimino]butane

The title compound, $C_{18}H_{14}F_6N_2$, crystallizes with the -N= $C(CH_3)$ - $C(CH_3)$ =N- diimino group around an inversion center in a *trans* configuration.

Received 28 February 2007 Accepted 13 April 2007

Comment

 α -Diimines are a class of ligands with a wide range of applications, especially in homogeneous catalysis, being able to chelate metal atoms forming stable five-membered rings (Van Koten & Vrieze, 1982). In addition, these compounds can present different lateral groups attached to the diazadiene backbone, allowing control over steric hindrance and electronic behaviour. Moreover, the study of α -diimine metal complexes grew considerably in the past decade as they were described as highly active polymerization catalysts (Johnson *et al.*, 1995). In this specific process, the ligand largely influences the catalytic activity and polymer structure according to its electronegativity and bulkiness, respectively (Ittel *et al.*, 2000).

The present communication describes the chief characteristics of 2,3-bis(2-trifluoromethylphenylimino)-butane, $C_{18}H_{14}F_6N_2$, (I). The compound crystallizes with the -N= $C(CH_3)$ - $C(CH_3)$ =N- diimino group around an inversion center, in a *trans* configuration (Fig. 1).

$$CF_3$$
 (I)

The two independent planar groups in the molecule (the central link, -N= $C(CH_3)$ - $C(CH_3)$ =N-, and the terminal aromatic ring) subtend an angle of 75.10 (1) $^{\circ}$.

Relevant bond lengths in the central core of (I) compare well with the corresponding ones in the recently reported related compound 2,3-bis(2-*tert*-butylphenylimino)butane (Ferreira *et al.*, 2006), (II): in particular, 1.423 (3)/1.418 (2) Å for C—N, 1.280 (3)/1.277 (2) Å for C—N, and 1.513 (4)/1.495 (3)Å for C—C, for (I)/(II), respectively.

The bond lengths found in (I) do not indicate a strong electron-withdrawing influence by the trifluoromethyl groups, although the F-C-F bond angles are smaller than expected (Deck *et al.*, 2006). Selected geometric parameters are listed in Table 1.

Experimental

© 2007 International Union of Crystallography All rights reserved 2-(Trifluoromethyl)aniline (0.6 ml, 4.8 mmol) was added slowly at room temperature to a toluene solution (15 ml) of 2,3-butanedione

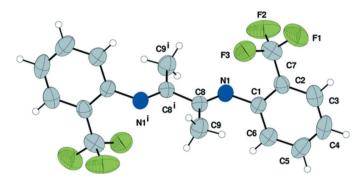


Figure 1

The molecular structure of (I) with displacement ellipsoids at the 50% probability level. [Symmetry code: (i) 1 - x, -y, 1 - z.]

(0.2 ml, 2.3 mmol) in the presence of a catalytic amount of acetic acid. The mixture was heated to reflux for 2 h with magnetic stirring. The solvent was partially evaporated and the crude yellow product was isolated by filtration, washed with cold methanol $(3 \times 10 \text{ ml})$ and dried *in vacuo*. Yellow block-shaped crystals suitable for X-ray diffraction were obtained by recrystallization from a chloroform solution (yield: 0.30 g, 35%; m.p. 432 K).

Crystal data

=	
$C_{18}H_{14}F_6N_2$	$V = 872.7 (3) \text{ Å}^3$
$M_r = 372.31$	Z = 2
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation
a = 10.472 (2) Å	$\mu = 0.13 \text{ mm}^{-1}$
b = 7.6884 (15) Å	T = 295 K
c = 10.885 (2) Å	$0.30 \times 0.25 \times 0.20 \text{ mm}$
$\beta = 95.26 \ (3)^{\circ}$	

Data collection

Nonius KappaCCD diffractometer	1618 independent reflections
Absorption correction: none	838 reflections with $I > 2\sigma(I)$
5857 measured reflections	$R_{\rm int} = 0.046$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.052$	119 parameters
$wR(F^2) = 0.135$	H-atom parameters constrained
S = 0.99	$\Delta \rho_{\text{max}} = 0.19 \text{ e Å}^{-3}$
1618 reflections	$\Delta \rho_{\min} = -0.20 \text{ e Å}^{-3}$

Table 1 Selected geometric parameters (Å, °).

C1-C2	1.394 (3)	C7-F1	1.343 (3)
C2-C7	1.488 (4)	C7-F2	1.344 (3)
C7-F3	1.337 (3)	C8-C9	1.491 (3)
F3-C7-F1	104.9 (2)	F1-C7-F2	104.9 (2)
F3-C7-F2	105.7 (2)		()

All H atoms in the structure were positioned geometrically at distances of 0.93 Å (aromatic) and 0.96 Å (methyl) and allowed to ride, with $U_{\rm iso}({\rm H})=xU_{\rm eq}({\rm C})$ (x=1.2 and 1.5 for Csp^2 and Csp^3 , respectively)

Data collection: *COLLECT* (Hooft, 1998); cell refinement: *PhiChi* (Duisenberg *et al.*, 2000); data reduction: *DIRAX* (Duisenberg, 1992); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

The authors thank CAPES, CNPq and FAPERJ for financial support, and Professor Renato Guimarães, (LDRX) Universidade Federal Fluminense, Brazil, for the diffract-ometer facility.

References

Deck, P. A., McCauley, B. D. & Slebodnick, C. (2006). J. Organomet. Chem. 691, 1973–1983.

Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92-96.

Duisenberg, A. J. M., Hooft, R. W. W., Schreurs, A. M. M. & Kroon, J. (2000).
J. Appl. Cryst. 33, 893–898.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

Ferreira, L. C., Filgueiras, C. A. L., Hörner, M., Visentin, L. do C. & Bordinhao, J. (2006). *Acta Cryst.* E62, o4282–o4284.

Hooft, R. W. W. (1998). *COLLECT*. Nonius BV, Delft, The Netherlands. Ittel, S. D., Johnson, L. K. & Brookhart, M. (2000). *Chem. Rev.* **100**, 1169–1103

Johnson, L. K., Killian, C. M. & Brookhart, M. (1995). J. Am. Chem. Soc. 117, 6414–6415.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Van Koten, G. & Vrieze, K. (1982). Adv. Organomet. Chem. 21, 151-239.