Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

João A. S. Bomfim, ${ }^{\text {a* }}$ Marcos L. Dias, ${ }^{\text {a }}$ Carlos A. L. Filgueiras, ${ }^{\text {b }}$ Lorenzo do C. Visentin ${ }^{\text {b }}$ and Jairo Bordinhao ${ }^{\text {b }}$
${ }^{\text {a }}$ Instituto de Macromoléculas Eloisa Mano, Universidade Federal do Rio de Janeiro, Caixa Postal 68525, 21945-970 Rio de Janeiro, RJ, Brazil, and ${ }^{\mathbf{b}}$ Instituto de Química, Universidade Federal do Rio de Janeiro, Caixa Postal 68563, 21949-900 Rio de Janeiro, RJ, Brazil

Correspondence e-mail: jasb@ima.ufrj.br

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.052$
$w R$ factor $=0.135$
Data-to-parameter ratio $=13.6$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
2,3-Bis[2-(trifluoromethyl)phenylimino]butane

The title compound, $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~F}_{6} \mathrm{~N}_{2}$, crystallizes with the $-\mathrm{N}=$ $\mathrm{C}\left(\mathrm{CH}_{3}\right)-\mathrm{C}\left(\mathrm{CH}_{3}\right)=\mathrm{N}$ - diimino group around an inversion center in a trans configuration.

Comment

α-Diimines are a class of ligands with a wide range of applications, especially in homogeneous catalysis, being able to chelate metal atoms forming stable five-membered rings (Van Koten \& Vrieze, 1982). In addition, these compounds can present different lateral groups attached to the diazadiene backbone, allowing control over steric hindrance and electronic behaviour. Moreover, the study of α-diimine metal complexes grew considerably in the past decade as they were described as highly active polymerization catalysts (Johnson et al., 1995). In this specific process, the ligand largely influences the catalytic activity and polymer structure according to its electronegativity and bulkiness, respectively (Ittel et al., 2000).

The present communication describes the chief characteristics of 2,3-bis(2-trifluoromethylphenylimino)butane, $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~F}_{6} \mathrm{~N}_{2}$, (I). The compound crystallizes with the $-\mathrm{N}=\mathrm{C}\left(\mathrm{CH}_{3}\right)-\mathrm{C}\left(\mathrm{CH}_{3}\right)=\mathrm{N}$ - diimino group around an inversion center, in a trans configuration (Fig. 1).

(I)

The two independent planar groups in the molecule (the central link, $-\mathrm{N}=\mathrm{C}\left(\mathrm{CH}_{3}\right)-\mathrm{C}\left(\mathrm{CH}_{3}\right)=\mathrm{N}-$, and the terminal aromatic ring) subtend an angle of $75.10(1)^{\circ}$.

Relevant bond lengths in the central core of (I) compare well with the corresponding ones in the recently reported related compound 2,3-bis(2-tert-butylphenylimino)butane (Ferreira et al., 2006), (II): in particular, 1.423 (3)/1.418 (2) \AA for $\mathrm{C}-\mathrm{N}, 1.280(3) / 1.277(2) \AA$ for $\mathrm{C}=\mathrm{N}$, and 1.513 (4)/ 1.495 (3) \AA for $\mathrm{C}-\mathrm{C}$, for (I)/(II), respectively.

The bond lengths found in (I) do not indicate a strong electron-withdrawing influence by the trifluoromethyl groups, although the $\mathrm{F}-\mathrm{C}-\mathrm{F}$ bond angles are smaller than expected (Deck et al., 2006). Selected geometric parameters are listed in Table 1.

Received 28 February 2007
Accepted 13 April 2007

Figure 1
The molecular structure of (I) with displacement ellipsoids at the 50% probability level. [Symmetry code: (i) $1-x,-y, 1-z$.]
$(0.2 \mathrm{ml}, 2.3 \mathrm{mmol})$ in the presence of a catalytic amount of acetic acid. The mixture was heated to reflux for 2 h with magnetic stirring. The solvent was partially evaporated and the crude yellow product was isolated by filtration, washed with cold methanol $(3 \times 10 \mathrm{ml})$ and dried in vacuo. Yellow block-shaped crystals suitable for X-ray diffraction were obtained by recrystallization from a chloroform solution (yield: $0.30 \mathrm{~g}, 35 \%$; m.p. 432 K).

Crystal data

$\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~F}_{6} \mathrm{~N}_{2}$
$M_{r}=372.31$
Monoclinic, $P 2_{\mathrm{L}} / n$
$a=10.472(2) \AA$
$b=7.6884(15) \AA$
$c=10.885(2) \AA$
$\beta=95.26(3)^{\circ}$
$V=872.7$ (3) \AA^{3}
$Z=2$
Mo $K \alpha$ radiation
$\mu=0.13 \mathrm{~mm}^{-1}$
$T=295 \mathrm{~K}$
$0.30 \times 0.25 \times 0.20 \mathrm{~mm}$

Data collection

Nonius KappaCCD diffractometer
Absorption correction: none
5857 measured reflections

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.052$
$w R\left(F^{2}\right)=0.135$
$w R\left(F^{2}\right)=0.135$
$S=0.99$
1618 reflections

Table 1
Selected geometric parameters ($\mathrm{A},{ }^{\circ}$).

C1-C2	$1.394(3)$	C7-F1	$1.343(3)$
C2-C7	$1.488(4)$	C7-F2	$1.344(3)$
C7-F3	$1.337(3)$	C8-C 9	$1.491(3)$
F3-C7-F1	$104.9(2)$	F1-C7-F2	$104.9(2)$
F3-C7-F2	$105.7(2)$		

All H atoms in the structure were positioned geometrically at distances of $0.93 \AA$ (aromatic) and $0.96 \AA$ (methyl) and allowed to ride, with $U_{\text {iso }}(\mathrm{H})=x U_{\text {eq }}(\mathrm{C})\left(x=1.2\right.$ and 1.5 for Csp ${ }^{2}$ and $\mathrm{Cs} p^{3}$, respectively)

Data collection: COLLECT (Hooft, 1998); cell refinement: PhiChi (Duisenberg et al., 2000); data reduction: DIRAX (Duisenberg, 1992); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors thank CAPES, CNPq and FAPERJ for financial support, and Professor Renato Guimarães, (LDRX) Universidade Federal Fluminense, Brazil, for the diffractometer facility.

References

Deck, P. A., McCauley, B. D. \& Slebodnick, C. (2006). J. Organomet. Chem. 691, 1973-1983.
Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92-96.
Duisenberg, A. J. M., Hooft, R. W. W., Schreurs, A. M. M. \& Kroon, J. (2000). J. Appl. Cryst. 33, 893-898.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Ferreira, L. C., Filgueiras, C. A. L., Hörner, M., Visentin, L. do C. \& Bordinhao, J. (2006). Acta Cryst. E62, o4282-o4284.
Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Ittel, S. D., Johnson, L. K. \& Brookhart, M. (2000). Chem. Rev. 100, 11691203.

Johnson, L. K., Killian, C. M. \& Brookhart, M. (1995). J. Am. Chem. Soc. 117, 6414-6415.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Van Koten, G. \& Vrieze, K. (1982). Adv. Organomet. Chem. 21, 151-239.

[^0]: (C) 2007 International Union of Crystallography All rights reserved

